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Experiments were done with strong shocks diffracting over steel ramps immersed 
in argon. Numerical simulations of the experiments were done by integrating the 
Navier-Stokes equations with a higher-order Godunov finite difference numerical 
scheme using isothermal non-slip boundary conditions. Adiabatic, slip boundary 
conditions were also studied to simulate cavity-type diffractions. Some results from 
an Euler numerical scheme for an ideal gas are presented for comparison. When the 
ramp angle 8 is small enough to cause Mach reflection MR, it is found that real 
gas effects delay its appearance and that the trajectory of its shock triple point is 
initially curved; it eventually becomes straight as the MR evolves into a self-similar 
system. The diffraction is a regular reflection RR in the delayed state, and this 
is subsequently swept away by a corner signal overtaking the RR and forcing the 
eruption of the Mach shock. The dynamic transition occurs at, or close to, the ideal 
gas detachment criterion 8,. The passage of the corner signal is marked by large 
oscillations in the thickness of the viscous boundary layer. With increasing 6, the 
delay in the onset of MR is increased as the dynamic process slows. Once self- 
similarity is established the von Neumann criterion is supported. While the evidence 
for the von Neumann criterion is strong, it is not conclusive because of the numerical 
expense. The delayed transition causes some experimental data for the trajectory 
to be subject to a simple parallax error. The adiabatic, slip boundary condition 
for self-similar flow also supports the von Neumann criterion while 6 < 6,, but the 
trajectory angle discontinuously changes to zero at 6,, so that 8, is supported by the 
numerics, contrary to experiments. 

1. Introduction 
Consider the regular and irregular wave systems which appear when a plane 

incident shock i diffracts over a rigid ramp of apex angle 8 as in figure 1. In this 
paper a detailed study is made of the transition between regular (RR, figure la) 
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FIGURE 1. Regular and irregular strong shock diffraction. (a) R R ;  ( h )  C M R ;  states i, incident 
shock; r ,  reflected shock; n, Mach shock; cs, corner signal; r ' ,  augmented reflected shock; cd, 
contact discontinuity; B,  interaction zone; N ,  triple point node; R, R R  node; 0, ramp angle; x, 
triple point trajectory angle; 6,,, particle path deflection across n shock; y ~ ,  ramp impact angle; 
subscripts: 0, undisturbed state; 1,2, states downstream of i and r ,  respectively. 

and irregular (IR) reflection on the ramp. Here the IR will be either a self-similar 
complex Mach reflection (CMR, figure Ib), or a non-steady system of somewhat 
similar appearance. As usual, i is defined to be strong if near transition RR e IR, 
the flow leaving the reflected shock is supersonic M 2  > 1, where M is the flow Mach 
number for coordinates that are fixed with respect to either the reflection node R, or 
the Mach (shock triple point) node N ,  and states 0, 1, and 2 are indicated in figure 1. 
Conversely, i is weak when Mz < 1. Irregular systems have different structures in the 
strong and weak cases. The weak irregularities include single Mach reflection (SMR) 
and von Neumann reflection (VNR). A CMR or double Mach reflection (DMR) is 
impossible for stationary and pseudo-stationary weak shocks because the necessary 
condition that M2 > 1 is not fulfilled. However a CMR or DMR appears possible 
when the system is neither stationary or pseudo-stationary, such as when either a 
corner signal or a shock overtakes a SMR from the rear. 

The transition criteria which determines when RR + IR have been discussed 
previously for the perfect gas (Henderson 1987; von Neumann 1963; Hornung 1986; 
Ben-Dor 1992). There are three alternative criteria for strong shock transition, namely 
the detachment point 8, (von Neumann 1963), the sonic point 8, (Hornung, Oertel 
& Sandeman 1979; Lock & Dewey 1989), and the von Neumann point BN (von 
Neumann 1963; Henderson & Lozzi 1975). The angles 8, and O5 are very close and 
it is usually difficult to discriminate between them, but the 8N point is sufficiently 
different from the others to be discriminated experimentally. 

Many experimenters have found that the O N  point correctly predicts transition 
for stationary shock systems, as in a wind tunnel (Hornung, Oertel & Sandeman 
1979; Henderson & Lozzi 1975; Molder 1971; Pantazapol, Bellet & Soustre 1972; 
Hornung & Robinson 1982). However, transition may be forced to other positions by 
changing the system boundaries, such as by using cylindrical instead of plane surfaces 
(Heilig 1969; Henderson & Lozzi 1979; Ben-Dor 1992); hysteresis effects may also 
be observed. Stationary and symmetric boundaries are illustrated in figure 2(a). 
Although the data are more scattered, there is also evidence that the O N  point is 
correct for the unsteady self-similar symmetric internal cavity diffractions, shown in 
figure 2(b), (Henderson & Lozzi 1975, 1979). By contrast, for the asymmetric, but 
unsteady, self-similar diffraction over ramp, figure 2(c), transition occurs closest to 
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FIGURE 2. Symmetrical and unsymmetrical shock reflection: ( a )  stationary, symmetrical reflection; 
(b)  self-similar, symmetrical reflection; (c) self-similar unsymmetrical reflection with a boundary 
layer. 

the Oe point. The experiments often show that RR persists for conditions that should 
make its existence impossible according to the von Neumann theory for a perfect 
gas (Henderson & Lozzi 1975, 1979; Bleakney & Taub 1949; Kawamura & Saito 
1956; Hornung 1986). Thus the 8, point is not an accurate criterion in this case, and 
this effect is referred to as the von Neumann paradox. It has long been recognized 
that viscosity and thermal conductivity could affect the transition. For example, a 
boundary layer begins at the reflection point on the ramp surface in figure 2(c), and 
the slope of its displacement height at this point could affect transition. But there is 
no boundary layer at the reflection point of any of figure 2(a,b), because those occur 
on planes of symmetry, and not on physical surfaces. 

The present paper presents a study of the diffraction of a strong shock over a 
ramp in a real gas. A real gas is defined as one which has a finite shear viscosity p 
and thermal.conductivity k .  The object is to find what effects these properties have 
on the diffractions and on their transition. It is found that the real gas properties 
delay the onset of MR on the ramp, and delay its evolution to a self-similar state. 
Our studies contrast the effects of two different boundary conditions on the ramp. 
One boundary condition corresponds to the existence of a boundary layer on the 
ramp, while the other corresponds to shock reflection at a plane of symmetry where 
there is no boundary layer even in a real gas. For the latter boundary condition 
there is typically no delay in the onset of MR and self-similarity is attained rapidly 
when 8 < 0, and 8 is not too close to 8,. But when 8 + 8, from below, an MR is 
still obtained but its evolution to self-similarity is increasingly delayed. It is found 
that both the 8, point and the QN points are important in strong shock diffraction, 
but that the two angles control different aspects of the diffraction. We also take the 
opportunity to study the effect of other boundary conditions on the ramp surface 
upon the shock system. 
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FIGURE 3.  Model designs for shock diffraction experiments: (a )  symmetrical model (b )  concave 
corner model (c) boundary layer (bl) in node fixed coordinates; v ,  boundary layer deflection angle 
at node R, wo, mi,  wave angles of i and Y with respect to the triple point trajectory. 

The methods employed for the investigation were shock tube experiments and 
numerical simulation of them by integration of the unsteady Navier-Stokes equations. 
Some numerical results for an inviscid, non-heat conducting perfect gas are presented 
for comparison. 

2. The experiments 
These were done in a conventional shock tube and are fully described elsewhere 

(Virgona 1993). Some of the data will be presented below. The shocks propagated 
in argon, which was chosen to simplify the physics. For example, there was no 
molecular vibration, rotation, dissociation, or bulk viscosity and for the shock Mach 
number of the experiments Mi = 2.33 there was no electron excitation or ionization. 
The significant non-ideal gas effects were caused by the shear viscosity and thermal 
conductivity. 

Strong plane shock waves were diffracted over smooth solid steel symmetrical 
ramp models of various semi-apex angles 9, see figure 3(a).  This design was chosen 
to reduce shock-boundary layer interactions which can be a troublesome aspect of 
concave corner models, see figure 3(b). 

We measured the angle x between the trajectory and the ramp surface, see fig- 
ure 3(a). This was done by taking a schlieren photograph of the diffraction after the 
shock had progressed approximately 4 cm up the ramp. In order to tie the measured 
angle x with the physical evolution of the shock diffraction, we must assume that 
the Mach shock n and indeed the whole system grows uniformly in time t ;  in other 
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words, the system is self-similar. The assumption is called the parallax assumption 
and since it is of some importance, it is stated formally. We emphasize that this 
is an assumption and will later present evidence that the assumption is sometimes 
incorrect. 

Parallax assumption. A Mach reflection (SMR, CMR, DMR) present in the diffraction 
of a plane shock over a rigid plane ramp always grows self-similarly with time. In particular, 
the trajectory of its shock triple point is a straight line which always passes through the 
apex (corner) of the ramp. 

3. The gas model 
The minimum undisturbed pressure of the argon was about 0.1 atmosphere, while 

the maximum pressure caused by the shock compression was about 4 atmospheres. 
The minimum temperature of the undisturbed argon was about 288 K during the 
experiments, while the maximum temperature of the shock compressed gas was 
about 1400 K. In the numerical computations, we have represented the argon as a 
continuous medium because the mean free path is less than any discretization scales 
Ax. 

For these states, it was assumed that the virial equation of state applied, 

where 2 is the compressibility factor and B is the first virial coefficient. The gas tables 
of Hilsenrath et al. (1960) were used to find 2 for the p and T ranges of interest, 

p = 0.1 atm, 290 < T < 1400 K + 0.9993 < 2 < 1.00002, 
p = 4.0 atm, 290 < T < 1400 K + 0.99705 < 2 d 1.00085. 

(2) 
(3) 

so the error is less than 1% if argon is assumed to obey the perfect gas equation of 
state. The variation in the ratio of the specific heats is small, y = 5/3 & 0.014 for 
these ranges. We used the constant value y = 5 / 3 .  

For the viscosity ,u we assumed that 

2.01572 x lop6 
kg m-'s-l ' = 171.691 + T (4) 

This functional form was determined by fitting a curve to the tables and is accurate 
to better than 1% in the given temperature range. To the same accuracy in this 
temperature range, the Prandtl number P,. for argon is 0.67, 

( 5 )  P , . = k ,  PCP 

where C, is the specific heat at constant pressure and k is the thermal conductivity. 
The thermal conductivity k can then be found from the Prandtl number P,. The 
coefficient of second viscosity A is taken to be -2/3p as is appropriate for argon. 

4. The computations 
4.1. Plan 

The computations were planned as though we were doing experiments in a shock 
tube. The following quantities were held constant : 

y = $; P,. = 0.67; po = 14.1 kPa; To = 293.15 K (6) 



6 L. F. Henderson, FV K Crutchjield and R. J .  Virgona 

Qe Q s  QN 

53.776 53.924 57.021 

TABLE 1. Transition criteria for y = 5/3, M i  = 2.327. 0, detachment criterion; 
0, sonic criterion; ON von Neumann criterion. 

where the subscript refers to conditions in the undisturbed gas, and To is also the 
temperature of the ramp which was assumed to be isothermal. A method in Mark 
(1958) was used to check the assumption that the ramp surface is isothermal. By this 
means, the temperature rise caused by the passage of the shock was estimated to be 
O( 

The incident shock Mach number was also constant Mi = 2.327, which ensured 
that i was always a strong shock. The ramp angle 8 was variable and its values were 
selected to explore the effects of viscosity and thermal conductivity on transition. 
The values of 8 were chosen to cover the neighbourhood of the alternative transition 
angles, see table 1. 

4.2. Formulation 
The compressible Navier-Stokes equations for two-dimensional viscous unsteady 
polytropic gas dynamics are a mixed set of hyperbolic-parabolic partial differential 
equations which may be written in conservation form as (Anderson, Tannehill & 
Pletcher 1984) 

where 

K, so the error is small. 

atU+F(U)x+G(U)y  = R ( U ) x + S ( U ) y  (7) 

e = E - (u2 + v2)/2 
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FIGURE 4. The rectangular computational domain is aligned with the top surface of the wedge 
The boundary conditions on the boundary segments a-e are described in the text. 

As usual, p is density, u and v are the x and y velocity components respectively, E is 
the specific energy, e is the specific internal energy, subscripting by x or y indicates 
a derivative, and subscripting by 2 or 3 indicates the second or third component 
of a vector. These equations include the viscous transport of momentum, diffusive 
transport of heat energy, and the dissipation of kinetic energy into heat. In the 
simulations, we assume that argon is well described by the perfect gas law, 

p = pRT . (14) 

(15) 

When combined with (13), the perfect gas law implies 

p = (y - 1)p ( e  - (u2 + v2)) . 
The computational domain is taken to be a rectangle whose lower edge is aligned 

with the surface of the ramp, as in figure 4. For the coordinate system which is 
aligned with the computational domain, the surface of the ramp is at  y = 0. The 
component u is tangential to the surface of the ramp, while the component u is 
normal. An incident shock i enters computational domain from the left at an oblique 
angle to the computational domain. There are five different boundary conditions on 
the computational domain. On edge a, the boundary condition is supersonic inflow 
of the post-shocked state. The boundary condition on edge b is a sharp transition 
between post- and pre-shocked states which moves to the right at the speed of the 
shock. On edge c, the boundary condition is that of the pre-shocked state. On the 
segment e, the boundary condition requires outflow. 

Segment d, where the boundary is coincident with the surface of the ramp, is of 
particular interest. The ramp surface is taken to be isothermal with a temperature 
T = 293.15 K. The ramp surface is also taken to be non-slip, with tangential 
component u = 0. 

4.3. The algorithm 
The computations described in this paper employ an adaptive semi-implicit scheme 
appropriate for unsteady viscous compressible flow (Steinthorsson, Modiano & 
Colella 1994; Steinthorsson et al. 1995). The algorithm has two important com- 
ponents : the semi-implicit finite difference scheme and the adaptive mesh refinement 
(AMR) implementation of the scheme. We will describe the finite difference scheme 
first. 



8 L. F. Henderson, W Y; Crutchfield and R. J .  Virgona 

This finite difference scheme employs a predictor-corrector cycle, combining an 
explicit higher-order Godunov prediction of the hyperbolic fluxes at a half-time level 
with an implicit Crank-Nicolson correction. Note that the scheme employs cells 
with an aspect ratio of one. The entire scheme is second-order accurate in time and 
space for smooth flows. In analogy to Godunov schemes for the Euler equations, 
the scheme is first-order accurate in the presence of an unresolved discontinuity, i.e. 
shock or contact discontinuity. In the predictor step of the algorithm, we use a 
straightforward extension of the unsplit second-order Godunov integration algorithm 
of Colella (1990) to compute the fluxes Ffl+l/* and Gn+l12 at the half-time level. In the 
computation of Fn+l12 and Gn+II2, the viscous fluxes enter only as sources computed 
at the lagged time level, R" and S". The lagging of the viscous flux source terms 
makes the Godunov fluxes F n f ' I 2  and Gn+1/2 only first-order accurate. However, the 
order of the finite difference method may be raised to second order by employing a 
Crank-Nicolson correction : 

Equation (16) is an implicit equation for Untl because Rn+l and Sn+l are functions 
of the variable U at the ( n  + 1)th time level. In the work described in this paper, the 
implicit equations were solved with a Gauss-Seidel relaxation. 

The 
length scale of the experimental apparatus which is being simulated is the order of 
several centimetres. The viscous boundary layer which forms on the ramp surface 
behind the incident shock has a thickness measured in microns. The thickness of 
the boundary layer approaches zero as the shock is approached. Resolving both of 
these length scales with a single uniform grid would require a prohibitive amount 
of computational resources. For these reasons, an adaptive numerical method is 
required which concentrates computational effort into small regions which require 
high accuracy and high resolution. The adaptive method described in this paper is 
based on a hierarchical grid approach first developed by Berger & Oliger (1984) for 
hyperbolic partial differential equations. This approach has been demonstrated to 
be highly successful in two dimensions for high-speed flow (Berger & Colella 1989) 
and in three dimensions (Bell et al. 1994). An extension of this methodology to 
the incompressible Euler equations is described in Almgren et al. (1993). AMR is 
based on a sequence of nested grids with successively finer spacing in both time 
and space. These fine grids are recursively embedded in coarser grids until the 
solution is sufficiently resolved. An error estimation procedure automatically gauges 
the accuracy of the solution and grid generation procedures dynamically create or 
remove rectangular fine grid patches as resolution requirements change. 

Figure 5,  reproduced from Pember et al. (1995), demonstrates the hierarchical grid 
structure in an application of AMR to inviscid gas dynamics. The contours in figure 5 
indicate increasing density in the interaction of a shock with an inclined ramp. Each 
rectangular box in the figure indicates an individual grid in a hierarchy of nested 
grids. The rectangle enclosing the entire problem domain is the single grid at the 
coarsest level of refinement. At the next finest level of refinement, a set of grids covers 

The shock diffraction problem has a very large range of length scales. 
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FIGURE 5. Application of hyperbolic AMR for inviscid compressible gas dynamics in the interaction 
of a shock and an inclined ramp using three levels of refinement. Rectangles are grids used in the 
adaptive gridding strategy. Contours indicate density. Note that grids on finer levels of refinement 
are automatically placed on regions of large gradients in the solution. 

the interaction region with higher resolution. A third and finest level of refinement is 
shown in the figure as relatively small boxes. Note that the grids on this finest level 
of refinement are concentrated in regions of large gradients in the solution. This is 
the result of an automatic adaptation of the grids to the changing solution. 

Rather than describe the AM R algorithm for the compressible Navier-Stokes 
equations in full detail (see Steinthorsson et a/ .  1994, 1995), we will briefly describe 
how it differs from an AMR algorithm for a purely hyperbolic equation (Berger & 
Oliger 1984; Berger & Colella 1989; Bell et a/ .  1994). AMR for hyperbolic systems 
uses a purely explicit time-stepping method. The basic discretization method for 
compressible Navier-Stokes equations described above has both an explicit predic- 
tion step and an implicit correction step. The compressible Navier-Stokes AMR 
algorithm therefore solves an implicit equation during the time-step advance, unlike 
the hyperbolic AMR algorithm. 

In AMR, coarse and fine grids are advanced in time at different speeds. However, 
the time steps are chosen such that a finer level of refinement synchronizes with a 
coarser level after a small integer number of time steps. In general, coarse grid cells 
are updated using fluxes computed on the coarse grid and fine grid cells are updated 
using fluxes computed on the fine grid. However, this prescription is inadequate 
for coarse grid cells directly adjoining a fine grid because on the shared face both 
coarse and fine grid fluxes are available. In order to preserve strict conservation and 
accuracy, it is desirable to update such coarse grid cells using the available fine grid 
fluxes, summed over the appropriate number of fine grid time steps. This is performed 
as a correction step: (i) the coarse cell is updated with coarse grid fluxes, (ii) the fine 
grids make sufficient time steps to reach the coarse grid time, accumulating fluxes on 
the coarse-fine boundary, (iii) the coarse cell is updated with the difference between 
the coarse grid flux and the summed fine grid fluxes. 

This adjustment to the coarse grid flux is performed in both the hyperbolic AMR 
algorithm and the compressible Navier-Stokes algorithm. The two AMR algorithms 
differ in their definition of the flux. For hyperbolic AMR, the flux is the Godunov 
flux, while for the compressible Navier-Stokes algorithm, the flux is an appropriately 
time-centred sum of Godunov fluxes and viscous fluxes, i.e. 

R” + p + I  

(17) Ffl+I/Z ~ Ffl+I/Z 

+ 2 .  
Note that for the compressible Navier-Stokes AMR algorithm, both the coarse and 
fine grid fluxes are computed implicitly, but the update to the adjacent coarse cells 
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FIGURE 6. Typical levels of refinement around Mach reflection pattern. Dashed lines indicate 
incident shock i, reflected shock r ,  Mach stem n.  Dotted line is contact surface cs. Solid lines show 
boundaries of refinement regions 2, 3, and 4. Refinement regions 0 and 1 are not shown. 

is performed explicitly. In comparison, a more complex consistency scheme between 
different levels of refinement is imposed in the AMR algorithm for the incompressible 
Euler equations (Almgren et al. 1993). 

The algorithm described in this paper and in Steinthorsson et al. (1994, 1995) was 
implemented using mixed language programming, i.e. the organizational levels of 
AMR were written in the C++ programming language while all routines performing 
floating point intensive parts of the algorithm (e.g. the Godunov integrator and linear 
algebra solvers) were written in FORTRAN. The AMR C++ class structure for this 
algorithm is described in Crutchfield & Welcome (1993). 

4.4. Regridding strategy 
Adaptive mesh refinement algorithms must specify the policy by which fine grids are 
recursively allocated on the problem domain. The compressible Navier-Stokes AMR 
algorithm uses a combination of two mechanisms. The first mechanism automatically 
tags cells as requiring further refinement if a Richardson extrapolation of the solution 
on two different levels of refinement indicates that additional refinement is necessary 
to maintain a given level of accuracy (Berger & Colella 1989). A second mechanism 
allows the user to manually override the automatic error estimation and mark certain 
regions as either never requiring refinement or always requiring refinement. The 
second mechanism is implemented as a user-defined subroutine which is executed 
after the automatic mechanism has computed error estimates for the cells. The 
second mechanism would be employed when the user has knowledge of the physical 
problem that provides a more accurate specification of where refinement is required. 

For the purposes of this paper, it is a practical necessity to manually override the 
automatic placement of grids. Given the extreme range of scales to be resolved, it is 
necessary to reduce the size of the refined regions to a practical minimum. Here, we 
are concerned with the effect of viscosity upon the shock reflection pattern. The finest- 
scale viscous structures will form in regions of maximum velocity and temperature 
gradients. One such region considered to have physical importance is at the surface 
of the ramp. Therefore in this paper, the finest grids are concentrated at the surface 
of the ramp. In addition, preliminary calculations have shown the existence of a 
strong rarefaction fan where the Mach stem intersects the ramp surface. Therefore, 
refinement will also be allowed in a rectangular region surrounding the point at the 
surface which intersects either the Mach stem (Mach reflection) or the initial shock 
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FIGURE 7. Five levels of refinement in a compressible Navier-Stokes calculation. The coarsest level 
is (a). Each succeeding level (h-e) is refined by factor of four. 



12 L. F. Henderson, W Y; Crutchjield and R. J .  Virgona 

Level 0 1 2 3 4 
Ax (m) 1.0 x 2.6 x 6.5 x lop6 1.6 x lop6 4.1 x 

% refined 100 62 0.58 0.019 0.000374 

TABLE 2. Percentage of computational domain which is refined at  each level in typical calculation 

(regular reflection). In general, shocks are not resolved to the finest level of refinement 
in this problem except when they fall within the regions described above, even though 
they have very large gradients. Even where shocks are covered by finest level grids, 
the shocks are not resolved by the grid, i.e. Ax4 9 mean free path. 

The calculations described utilize five levels of refinement, with each level a factor 
of four more refined than the next coarser level. The cell size of the nth level of 
refinement is denoted Ax,,. The levels are numbered from 0 to 4. On levels 0 and 
1, only the automatic strategy is employed to place grids. Since coarse grids employ 
very little storage and CPU time, there is no reason to attempt to optimize their 
placement. On levels 2, 3, and 4, grids are restricted in the manner described above. 
Figure 6 illustrates a typical placement of the refined levels. The position of the grids 
is recalculated periodically, so the refined regions approximately retain these positions 
with respect to the moving shock waves. 

Figure 7 illustrates the multilevel nature of AMR and the regridding strategy 
employed in this paper. Each 
succeeding level of refinement is a factor of four finer in resolution. Rectangular 
outlines in figure 7 indicate the location of refined regions as described above. At 
the coarsest level of refinement, neither the Mach shock nor the boundary layer is 
visible. The finest level of refinement clearly shows both features. In figure 7 only a 
very small percentage of the computational domain is resolved at the finest level of 
refinement. Table 2 show percentages of refinement for each level in the simulation 
for 6’ = 52” near the end of the calculation. 

The approach described above introduces some numerical error into the simulation. 
Numerical error is introduced where a shock crosses a boundary between fine and 
coarse grids. Close examination of figure 7 will show faint smears emanating from 
such points. In regions where the flow is smooth, there is no detectable error 
emanating from boundaries between coarse and fine grids. Because we cannot afford 
to refine the entire length of every shock, it is inevitable that such numerical error 
exists in the calculation. Given that we cannot eliminate these errors, we have tried 
to minimize their effect upon important physical phenomena in shock diffraction by 
varying the size of the refined region. The dimensions of the refined regions shown 
in figure 6 have been set empirically. Our approach has been to repeat a calculation 
while increasing the size of the refined regions. When the results cease to change with 
increasing size of the refined regions, we choose that size for subsequent calculations. 

We also employ the following rules of thumb in setting the size of the refined 
regions. First, if the solution forms a Mach stem, the Mach stem is always refined 
at least to level 3 (level 4 is the finest). The base of the Mach stem is always refined 
to the finest level. Second, the thickness of the refined region in the long flat layer 
extending far behind the initiating shocks is always 16 cells on the fourth (finest) 
level of refinement. On the third level of refinement, the layer beginning at c and 
extending off the figure is at least twice as thick as the grids of the fourth level that it 
encloses. Thirdly, the flat refinement layer is extended behind the initiating shock to 

Figure 7(a) is the coarsest level of refinement. 
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FIGURE 8. Triple-point trajectories at 8 = 50.5" for varying resolutions Axq. 

a distance at which the thickness of the viscous boundary layer becomes comparable 
to the thickness of the layer. At that point, the boundary layer is thick enough to 
be resolved on a next coarser level of refinement. That is the criterion by which the 
position b on the fourth level of refinement was chosen. 

4.5. Convergence studies 
In the problem of strong shock diffraction of real gases over a ramp, it is necessary 
to resolve very small scales, i.e. the boundary layer which forms at the surface of the 
ramp. It is well known (Mirels 1956; Mirels & Hamman 1962) that the boundary layer 
thins as the shock is approached from downstream and approaches zero thickness at 
the shock. It is therefore impossible with current computational resources to resolve 
the boundary layer in the immediate neighbourhood of the shock. This section 
will present evidence that it is possible to resolve enough of the important physical 
phenomena in this problem to make meaningful predictions. 

One of the major results that this paper presents is that, unlike the Euler equation, 
the numerical solutions to compressible Navier-Stokes equations do not evolve in 
a self-similar manner. In particular, the trajectories of the shock triple point are 
not straight lines, but are curved. We also observe, as expected, that the trajectory 
depends strongly on the fine-grid resolution Ax, see figure 8. It is convenient to 
extract a single number from each trajectory to characterize its dependence upon 
grid resolution. Figure 9 shows how we analyse a shock triple-point trajectory in 
the (x,y)-plane and extract (among others) the quantity we denote as xLnt,  which 
is done by determining the line to which the trajectory asymptotes when it reaches 
self-similarity. The x intercept of that line is xlnt. 

Figure 10 shows the behaviour of xlnt at 8 = 50.5" as the finest grid resolution Ax4 
is decreased. This graph strongly suggests that xlnt is converging to a finite value 
as Ax4 ---f 0 and that the order of convergence is first. This result is expected since, 
as stated earlier, the finite difference scheme is second-order accurate in regions of 
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FIGURE 9. Trajectory angle x computed for x = 4 cm and subject to parallax error angle E ;  is the 
y , self-similar trajectory angle, free of parallax; xint, yinr are coordinate intersections of the tangent 
to the self-similar part of the trajectory. 
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FIGURE 10. xint versus Ax4 at 0 = 50.5". Linear fit to the calculated x,,~ is shown 

smooth flow, but only first-order in the presence of a discontinuous shock. Also 
shown is a linear fit to the computed x,,~, 

x,,* = 0.00652 - 0.00178A~4 . 
The calculations reported in the remainder of this paper were performed with a 

resolution on the finest level Ax4 = 4.07 x lop7 m. Figure 10 clearly indicates that for 
Ax4 = 4.07 x m, the calculation is not fully converged. At this value of Ax4 the 
calculated value of xtnt is 0.00568 m while the linear extrapolation above suggests a 
converged calculation would measure 0.0065 m. Because of computational expense, 
we are not able to perform the calculations described below at a finer Ax+ All 

(18) 
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results should be implicitly understood to result from a calculation which is 85-90% 
resolved. However, some quantities, such as the asymptotic slope of the triple-point 
trajectory, are quite insensitive to the value of Axq. 

4.6. System diagnostics 
4.6.1. Definition of the self-similar Mach number M 

The numerical data were post-processed to obtain various quantities which could 
make it easier to understand the physics of the diffraction. Pressure p is a sensitive 
indicator of compression waves, while the contours of entropy s coincide with contact 
surfaces and with particle paths behind curved shocks, and they can also distinguish 
between shock and isentropic processes. The velocity component u is sensitive to the 
viscous boundary layer; and the temperature T ,  or equivalently the internal energy 
e, is sensitive to the thermal boundary layer; while v can reveal disturbances in the 
boundary layer. 

One of the most useful diagnostic tools is the self-similar Mach number h?! which 
is defined in the following way. Let 

where (xo,yo)  are the coordinates of a fixed reference point, such as the ramp corner. 
Now let, 

A A 

u = u - x ;  v ^ = v - j ,  (20) 

where a is the local speed of sound. When ( 2 , j )  are chosen to coincide with a wave 
node, then &f is the flow Mach number in coordinates which are at rest with respect 
to the node. Note that in an e-neighbourhood of the node M -+ M (see for exampie 
the discussion in Jones, Martin & Thornhill 1951 or Sternberg 1959). Naturally M 
may be variable about the node. We often found it helpful to superimpose the M = 1 
contour on the graphics of other quantities such as p and s. 

4.6.2. Boundary layer diagnostics 
It has been noted (Mirels 1956; Mirels & Hamman 1962) that the negative displace- 

ment height of the boundary layer in the node-fixed coordinates induces a deflection 
in the particle path of angle v at R, see figure 3(c). The deflection is caused both 
by the cooling of the isothermal wall which substantially increases the density p ( y )  
inside the boundary layer, especially at the ramp surface, and by the apparent gain 
in mass in node-fixed coordinates due to viscous action. One way to calculate v is to 
calculate the boundary layer displacement height and then differentiate to obtain its 
slope at the node. But this requires the assumption that the displacement height is 
the appropriate one, and this may not be correct; it could be the momentum height 
for example. A better way, at least in principle, is to calculate v from the change 
in M across the reflected shock r by using the ordinary shock wave equations for a 
perfect gas (AMES 1953). Thus for RR, the particle path deflection angles for the 
incident shock can be calculated from the given data y, M , ,  and 8, while 6,  for the 
reflected shock can be calculated from th? shock wave equations by extracting M ,  
and M 2  from the numerical results. Here M is for coordinates at rest with respect to 
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the node R, so that M1 = 6 1 ,  M2 = M2. In terms of 60, 61, the boundary condition 
for RR on the ramp for a viscous gas is 

60 - 61 + v = 0, (22) 

therefore 

while for a non-viscous gas, 
v = 61 - 60 < 0, 

61 - 60 = 0. 

4.6.3. Wave direction 
It will be useful to assign a direction to a wave by resolving the flow vectors 

relative to it, and upstream and downstream of it, into component vectors normal 
and parallel to the wave (von Neumann 1963; Glimm et al. 1985). Then the direction 
of any oblique wave is merely the same as that of the tangential vector component 
of velocity; this vector does not of course change across the wave. When an oblique 
wave points toward the node then it arrives there, but when it points away from it, 
then it leaves the node. Examples are shown in figures 1 and 2. An oblique wave 
will also be considered as being in either one of two families, in the same sense as & 
characteristics. For example in figure 2(a), it il and r2 are, for example, in the first 
family, then i2 and rl are in the second, while il and i2 arrive at the reflection node 
and rl and 7-2 leave it. 

5. Results and discussion 

5.1.1. Before the eruption of the Mach shock 
When 8 < 8,, experiments show that some form of Mach reflection (SMR, CMR, 

DMR) will appear, except perhaps when 8 + 8, from below which can lead to 
an indefinite result because of the difficulty of resolving the wave system. In our 
experiments with 8 = 52” which is close to Oe = 53.776”, the shock system had the 
appearance of a regular reflection except that the i and r shocks apparently did not 
meet on the ramp surface. Instead there seemed to be a small gap g between them, 
see figure 1 l(a). Accordingly, it was described as an ‘unresolved irregular reflection’. 
However, our numerical computations have a finer resolution than the schlieren 
apparatus and can resolve it. The wave system obtained numerically is sketched in 
figure l l ( b )  and the colour graphics for the velocity field u and pressure field p are 
presented in figures 12 and 13 respectively. 

Figure 12 shows a time sequence of 15 images which cover a period of approximately 
17.2 ps. Note the presence of the boundary layer on the ramp surface behind the 
initiating shock in each image. Each image shows a region 130 x lop6 m square in 
the neighbourhood of the reflection point. The centre of the imaged region advances 
down the ramp with a speed of 1205 m s-’. The speed of the incident shock was 
742.1 m s-l in the laboratory-frame coordinates. Figure 13 shows a time sequence 
of nine images starting at the same time as the first image of figure 12 and covering 
a interval of 19.2 ps. Images are separated by roughly 2.4 ps. In contrast to the 
images of figure 12, which show a region of constant spatial extent in the laboratory 
frame, the images of figure 13 show a constant extent in self-similar coordinates. Each 
image shows the same region, 1140 m s-l < 2 < 1235 m s-l and 0 d 9 < 95 m s-’. 

5.1. Transition dynamics when 8 < ee 
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FIGURE 11. Experimentally observed and numerically resolved diffraction for Q = 52", 'J = 5/3, 
A, = 2.327. ( h )  
Computationally resolved diffraction; B ,  bend, interaction zone. (c) system after cs + R collision; 
n, Mach shock; N, shock triple-point node. 

(a )  Unresolved irregular reflection observed in experiment; g is the 'gap'. 

Figure 13 also has superimposed upon it the contour of the self-similar Mach number 
M = l .  

The first seven frames of figure 12 have the same structure as shown in figure 1 l(b). 
The wave system consists of a pre-cursor regular reflection ( i  - r ) ,  but further 
downstream r is overtaken by the corner signal cs which forces r to bend smoothly at 
B into a steeper shock r' say. The r - s - r' wave triplet has some similarity to what 
Colella & Henderson (1990) called a von Neumann reflection (VNR), except that cs 
arrives at the intersection zone B whereas in a VNR the corresponding disturbance 
leaves the zone. It is interesting to note that the pre-cursor regular reflection cannot 
exist for an ideal (inviscid, non-heat-conducting) gas when 0 < 0,. Is is only possible 
here because the existence of the boundary layer, as shown in figure 3(c), requires the 
use of equation (23) rather than (24). 

5.1.2. Eruption of the Mach shock 
It will be noticed from figure 12 that cs overtakes the reflection node somewhere 

around the ninth frame. So the pre-cursor system is dynamically unstable. After the 
cs + R collision, a Mach shock n and its associated shock-triple-point node N erupt 
from the ramp surface, see figures 1 l(c), 12, 13. The Mach shock travels with a greater 
velocity than the incident shock and consequently its length increases with time. The 
results show that n is faster than c's, so the distance between them now increases with 
time. With further development, which is not presented, the system evolves to the 
self-similar state called complex Mach reflection (CMR). In our 8 = 52" experiment 
we photographed the shock system when it was about 4 cm along the ramp surface. 
According to the numerical results, a Mach reflection forms when the incident shock 
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FIGURE 12. Time sequence of velocity component u, for y = 5 / 3 ,  M ,  = 2.327, Q = 52"; ramp surface 
shown horizontal. Sequence is left to right followed by top to bottom. Units are m s-'. 
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FIGURE 13. Self-similar pressure and self-similar A = 1 contour for = 5 /3 ,  M i  = 2.327, 0 = 52". 
Units are Pa. 

has travelled down the ramp for 1.5 cm, so the system we photographed must be 
a MR even though our schlieren apparatus could not resolve it. Our numerical 
calculations indicate that at 4 cm, the Mach stem should be 0.37 mm high, which 
cannot be resolved in our experimental apparatus. 

The boundary layer and contact discontinuity cd are visible in the u field (figure 12), 
but not of course in the p field (figure 13). The Mach shock n is convex forward and 
actually arrives at the triple point N in figure 11. Strictly speaking, it is not a Mach 
node since n leaves such a node, see figure l(h). Instead it is more like a cross-node 
as in figures 2(a) and 2(h), but one for which the flow Mach number which leaves 
say il is subsonic. When this occurs r l  cannot exist and the ( i l  - i2 - r2) triplet 
comprises a 'degenerate' cross-node with il  and i 2  arriving and r2 leaving the node. 
This implies that n in figure 1 l(c) is behaving like a pre-cursor which is being driven 
from its rear, presumably by the same disturbance that caused the cs ---f R collision. 
The discussion of this disturbance will be deferred to 55.1.4. Notice that n curves 
backwards as it approaches the ramp and that it is not perpendicular to the surface. 
This is a consequence of a mass sink that effectively exists at the foot of the shock 
and also due to the strong cooling at the isothermal wall which causes the gas density 
to increase by a factor of about 4 and the viscous displacement effect ~ the angle v .  
Seiler & Schmidt (1978) found somewhat similar effects especially for the shape of 
the Mach shock. 
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5.1.3. The sonic surface 
Important results follow by superimposing the self-similar M = 1 contour onto the 

self-similar p field, figure 13. The contour appears to coincide with the rear of the 
overtaking cs - r’ disturbance. A detailed study was done by extracting horizontal 
( y  constant) and vertical (x constant) ‘cuts’ through the r’ and cs distyrbances. This 
showed that there was a positive entropy jump across r’ and that the M = 1 contour 
was embedded inside it. Furthermore, relative to r’ the flow left it subsonically, so r’ is 
a compression shock. By contrast it wasAfound that cs was an isentropic compression 
and was terminated at its rear by the M = 1 contour. This is further evidence that 
the overtaking disturbance cs - r’ is driven from its rear. 

In summary, the r - s - r’ wave triplet comprises the r shock and the cs isentropic 
compression, both of which arrive at the interaction region B, and the r’ shock which 
leaves it. The CMR thus appears to consist of a leading SMR followed by an r-cs-r’ 
wave triplet. A DMR would consist of a combination of two SMRs. 

5.1.4. The driving disturbance 
It will be convenient to continue with the 8 = 52” example in considering what 

disturbance drives the overtakingAcs - r’ Yave composite. We abstracted the self- 
similar flow Mach numbers Mo, M I ,  and Mz about the RR pre-cursor near R, then 
GO = 3.78, h?l = 1.96, and dZA= 1.18. The maximum particle path deflection 
(detachment) angle across r for MI = 1.96 is 18.8”. In the notation of Bleakney & 
Taub (1949) and Kawamura & Saito (1956), this corresponds to the wave angle for 
shock detachment o,, = 63.2”. This angle is with respect to the oncoming particle 
path, but with respect to the ramp surface it is w,, = 42.1”. However figure 12 shows 
that o; increases to o{ = 50” > 42.1” as r bends smoothly at B to r’, and this implies 
that r’ is behaving like a shock detaching from a steep wedge. This is not surprising 
since f3 = 52” < Oe implies that oo > o,, where oo is defined in figure 3, although in 
this case the trajectory virtually coincides with the ramp surface. In figure l l (b) ,  the 
gas velocity along the surface A (upstream of the apex) is the driving piston velocity 
Up, of the incident shock in laboratory-frame coordinates. The flow Mach number 
is Mp,  = 0.891 < 1, so r’ must detach from the ramp. Indeed the results show that 
r’ everywhere moves away from the apex. It is concluded that it is the ramp itself, 
which with 8 = 52” is a considerable blockage to the flow, is the disturbance which 
drives the r’ - cs composite wave as though it is a detaching shock. It  overtakes the 
RR pre-cursor and forces the eruption of the Mach shock. Evidently r’ will have a 
sonic point where cs arrives at B, and as Y’ continues to steepen through B it will also 
have a detachment point e’. With increasing steepness this detachment condition will 
be exceeded. Therefore as the i - r pre-cursor is overtaken by the r’ - cs composite, 
then first the sonic point overtakes R causing the corner signal cs to vanish, then the 
detachment point overtakes, and the Mach shock erupts as the detachment point is 
passed. After eruption the corner signal reappears and the evolution to a self-similar 
CMR begins. 

Remark 
Dr Ralph Menikoff of the Los Alamos National Laboratory read an early version 

of this paper. He noted that, “Your section on the driving disturbance fails to explain 
why there is a delay in the corner signal overtaking the reflected wave”. He offered 
us the following ingenious conjecture to explain this delay. His idea is based on an 
analogy with the Marshak thermal wave (Zeldovich & Raizer 1966). Suppose a block 
of metal is suddenly heated by thermal radiation. Then a thermal wave propagates 
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into the metal and the temperature increase behind the wave also raises the pressure. 
Usually a rapid rise in pressure will cause a shock. However in this case, the thermal 
wave initially moves faster than the shock, that is a t  supersonic speed. However the 
speed of the thermal wave falls off with distance and eventually becomes subsonic. 
The pressure disturbances can then organize into a shock which outruns the thermal 
wave. 

Now consider the delay in the overtaking of the corner signal. The diffusion of 
momentum and heat in the boundary layer is analogous to the conduction of heat in 
the metal. The boundary layer propagates into the compressed argon downstream of 
the pre-cursor R R  node (figure l l h ) .  The temperature changes inside the boundary 
layer also cause dynamic pressure disturbances. If the boundary layer thickness is 
say y * ,  then it propagates at a definite velocity, say u * ,  in the y-direction. Since the 
boundary layer is exceedingly thin near the node it will be assumed to be laminar, 
so by the Blasius theory, y’ cc x/(Re)’”, where Re = ux/y’ is the Reynold’s number, 
x is the distance from the pre-cursor R R  node, u is the gas velocity just outside the 
boundary layer in the x-direction, and y’ is the kinematic viscosity y’ = p/p .  Therefore 
y* cc ( xy ’ t / x )1 /2  cc ( y ’ ~ ) ’ ’ ~ ,  where t is the time. Then u* = dy*/dt  cc (q’/t)’l2. Now 
when the node is near the ramp apex, then t will be small for any particular x. In 
this case v* may exceed the speed of sound of the compressed argon u* > a2, that 
is the boundary layer (analogous to the Marshak wave) propagates at supersonic 
speed in the y-direction. But with increasing time, u s  decreases as l/t-’”, and in a 
time of the order of t 3 q’/u; the diffusing boundary layer wave thereafter moves 
at subsonic speed. But this now means that more flow enters the boundary layer 
than it can accommodate. The pressure disturbances now propagate out of the 
boundary layer to both retard the incoming flow and to form the corner signal. 
As we have seen, the corner signal is not a shock in this case but an isentropic 
compression. 

5.1.5. Experiments of’ the Lock-Dewey type 
During their experiments with weak shocks (ours are strong) Lock & Dewey (1989) 

generated sonic signals downstream of the shock system. They found that the signals 
overtook the regular reflection at, or  near, transition, but that this condition was not 
the same as the sonic point criterion obtained from the ideal von Neumann theory. 
A similar effect exists with our results, for if such experiments were done with our 
strong shocks with the 0 = 52” ramp but before the eruption of the Mach shock, then 
there is a sonic surface at the rear of the corner signal. The eruption of the Mach 
shock is very close to the point where the sonic surface overtakes the pre-cursor RR 
(in the 8th frame of figure 12). Yet 0 = 52“ is not the same as the sonic point angle 
8, = 53.294“ (table 1 )  obtained from the inviscid theory. 

5.1.6. The boundary layer disturbances 
An example of the disturbances in the 0, u, p ,  and e fields is presented in figure 14. 

Notice the large-amplitude disturbances in the boundary layer revealed by the field. 
They are associated with the corner signal cs which is visible in the p field. As cs 
sweeps over the boundary layer, it is associated with a downwelling of gas on its 
leading edge and an upwelling just behind the corner signal. On the upstream side 
of the corner signal v x 70 m s-l downwards and on the downstream side it is about 
v x 7 m SKI upwards. The shear in u is however small compared to the shear in u. 
The boundary layer is strongly thinned underneath it and rapidly thickened behind 
it, which must cause order of magnitude changes in the gradient of T .  



22 L. F. Henderson, K X Crutchjield and R. J .  Virgona 

FIGURE 14. Flow near pre-cursor regular reflection for 7 = 5/3, Mi = 2.327, 0 = 52". Each display 
is 247 x lop6 m long and 57 x m high. At this time the shock has traversed 0.0128 m of the 
computational domain. The quantities shown are (a )  u in m s-' ;  ( h )  u in m s-'; (c) pressure, in Pa; 
( d )  internal energy, in (m s-')'. 
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FIGURE 15. Boundary layer profiles at 0 = 52". Location of profiles is 41 x lo-' m behind the 
shock in the preceding figure. 

The initial temperature of the gas is To = 293.15 K and this is also the temperature 
of the isothermal surface of the ramp. Here the maximum temperature of the 
compressed gas is about 1400 K. The gas in the boundary layer is thus strongly 
cooled near the surface, in fact its density increases by a factor of more than 4. Some 
profiles are presented in figure 15. Our results show that the pressure change across 
the boundary layer is small so we display no graph for pressure. 

For 8 = 52", we had for the RR pre-cursor that A?, = 3.78, A,?, = 1.96, A?* = 1.18. 
From these data it is calculated that the effective slope of the boundary layer at the 
pre-cursor node R is v = -4.66". The boundary layer actually makes the pre-cursor 
possible by virtue of equation (23), but when the ideal gas boundary condition (24) 
applies, then an RR is impossible according to the theory of von Neumann. 

5.2. Numerical results .for an ideal gas 
The diffractions that we have discussed above have also been studied numerically by 
Professor P. Colella, but he used the Euler equations instead of the Navier-Stokes 
equations. He treated the argon as though it were an ideal, inviscid, and non-heat- 
conducting gas. As a consequence of the ideal gas assumption, the following boundary 
conditions are satisfied at the ramp surface: 

Some of these results are presented in figure 16 for the trajectory angle of the 
shock triple point N (figure lb) versus 8. Some experimental data are shown for 
comparison. A quadratic curve of best fit through the Euler calculations is 

x = 26.4137 - 0.63697719 + 0.00301802U2. (26) 
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FIGURE 16. Trajectory angle of the shock triple point versus ramp angle 0 for y = 5 /3 ,  M ,  = 2.327. 
Data from experiment, Euler calculations, and Navier-Stokes calculations are shown. Experimental 
data shows measurement error bars. A quadratic fit to the Euler calculations is shown as well as a 
linear fit to the Navier-Stokes results. The three transition criteria are indicated on the graph. 

When this equation is solved to find the intercept with x = 0, one gets 56.699" which 
is close to the von Neumann point at O N  = 57.021". There is a clear systematic 
discrepancy between the numerical Euler predictions and experimental results shown 
in figure 16 such that the Mach shock grows a little more slowly (smaller x) for the 
real gas of the experiments than it does for the ideal gas of the Euler numerical 
computation. 

In the numerical simulations of the Euler equations it is found that the triple-point 
trajectories are negligibly different from a straight line. The Mach shock thus grows 
uniformly with time; it is self-similar. More generally the results show that the flow 
is everywhere closely self-similar and that the diffraction pattern is a CMR. These 
results also mean that the parallax assumption is obeyed. Another consequence of 
the ideal gas assumption is that (24) is satisfied at the ramp surface. 

5.3. Numerical results ,from the Navier-Stokes calculations with isothermal and 

The numerical simulation of the Navier-Stokes equations takes into account the real 
gas properties of shear viscosity and thermal conductivity. The boundary conditions 
on the ramp surface are isothermal and non-slip, 

non-slip boundary conditions 

u = 0, T = To = 293.15 K. (27) 
These boundary conditions force the existence of a boundary layer on the ramp 
surface. 

When measuring x from experimental data, the parallax assumption is sometimes 
made implicitly, in fact it is practically unavoidable if only one photograph is taken 
for each experiment. This was the case for the experimental data shown in figure 16. 
The photographs were taken after the incident shock i had travelled about 4 cm 
along the ramp, and x was measured from the photograph by using the parallax 
assumption. 
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FIGURE 17. Numerical triple-point trajectories for viscous, heat-conducting argon, y = 5/3, 
M, = 2.327, at several wedge angles B. 
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In the numerical simulations of the Navier-Stokes equations, this same measure- 
ment process was repeated in order to make a correct comparison of simulation 
with experiment. From each simulation, the (x,y) coordinates of the shock triple 
point N were extracted as the incident shock travelled up the ramp. Generically the 
trajectories had the form of a curve which asymptotes to a straight line at large x. The 
asymptote corresponds to the self-similar later portion of the triple point's trajectory. 
Figure 17 shows triple-point trajectories for several ramp angles measured from the 
Navier-Stokes simulations. Ideally one would extract from the simulation trajectory 
the y position of N at x = 4 cm. However, in order to minimize computational effort, 
most simulations were terminated before the incident shock had travelled more than 
2.5 cm. The asymptoting line was then used to extrapolate the y position of the 
triple point to x = 4 cm along the ramp. Care was taken to run each simulation 
long enough to accurately determine the asymptoting line. Figure 9 demonstrates the 
extrapolation. The results of measurement of x are presented in figure 16 and the 
quadratic curve of best fit through these data is 

x = 19.44145 - 0.3590698 - 5.18962 10-50'. (28) 

The quadratic fit intersects x = 0 at 8 = 53.727", which is close to the detachment 
point at 8, = 53.776. 

Figure 9 also demonstrates the differences between the three angles which char- 
acterize the trajectories: x is the experimentally observable angle that is plotted in 
figure 16; y is the angle of the self-similar portion of the triple-point trajectory; c is 
the parallax displacement error. 

Thus subject to the parallax assumption the effect of the viscosity and thermal 
conductivity upon the computations is to reduce x for a given 19, as compared to 
the ideal (Euler) gas numerical calculation. The real gas properties slow the rate at 
which the length of the Mach shock increases, and also apparently shift the transition 
criterion from the von Neumann point to the detachment point. Additionally, the 
agreement with the experimental data has been improved. 
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5.4. Numerical test of the parallax assumption 
It is of interest to examine the parallax assumption in more detail. The ( x , y )  
coordinates of the triple point N were extracted from the Navier-Stokes numerical 
simulations at each time step to find out if the trajectory of N was in fact a straight 
li.ne through the apex. Some results are pregented in figure 17 and it is clear that every 
trajectory is curved. For example, it has been mentioned that for 0 = 52" the Mach 
shock erupts not at the apex but at about 1.5 cm down the ramp, corresponding to 
the ninth frame of figure 12. After eruption the trajectory is curved for a time, but 
soon becomes a straight line, although not of course through the apex. Once the 
trajectory becomes straight the Mach shock length grows uniformly in time, that is, 
it becomes self-similar and indeed the whole system becomes self-similar. All of the 
trajectories have the same kind of behaviour. This phenomenon has been reported 
in experiments with shocks in low-density gases (Seiler & Schmidt 1978; Walenta 
1987). It is concluded that the parallax assumption that the trajectory of the shock 
triple point is a straight line through the apex of the ramp is incorrect for a viscous, 
heat-conducting gas with isothermal and non-slip boundary conditions. 

5.5. The selfsimilar trajectory angle y 
There is of course nothing special about x = 4 cm. It was merely the approximate 
position of the shock system on the ramp when the photographs were taken in 
the experiments. But because the trajectories are curved, the values of x will not 
be independent of this length scale, see figure 9. A trajectory angle y which is 
independent of the observation position x can be defined by the slope of the straight 
portion of the trajectory; it will be called the self-similar trajectory angle. The scale- 
free y extracted from the Navier-Stokes calculations is presented in figure 18. The 
quadratic curve of best fit through the data is 

y = 25.1069 - 0.6476990 + 0.0035933802. (29) 

The intersection of the quadratic fit with the line y = 0 is 0 = 56.429" which is clearly 
closest to the von Neumann point 0,,, = 57.021". It was impractical to extend the 
calculations into the decisive range 0, < 8 < O N  because of computational cost. The 
computation for 0 = 52' which came closest to this critical range required 30 hours 
of CPU time on a Cray-YMP. Nevertheless the results do support the conclusion that 
the von Neumann point is the criterion for regular e irregular transition for self- 
similar strong shock diffraction over a rigid ramp with isothermal, non-slip boundary 
conditions. 

As shown in figure 9, it is possible to define an angle of parallax error E ,  

f - y - x .  (30) 

At later times when the trajectory has become straight and the system self-similar, 
the parallax error E tends to zero, so x + y .  In fact, according to (28) and (29), the 
parallax error is less than 1% when 8 < 43.4". To understand this, one can calculate 
the intercept x,,?~ that the self-similar trajectory makes with the ramp when its tangent 
is extrapolated to y = 0. Similarly y,,,, can be defined from figure 9 as 

Y,nr = -xlnf tany.  (31) 

Table 3 shows the analysis of Navier-Stokes calculations at six angles. 
The viscous/thermal properties of the gas introduce the length scale xlnr into each 

flow, but for fixed 0 the effect becomes negligible at later times or larger distances 
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FIGURE 18. Self-similar trajectory angle w of the shock triple point. For the Euler calculations where 
the diffraction is self-similar, y is the same as x. For the Navier-Stokes calculations, y differs from 
1 particularly as the transition is approached. The three transition criteria are indicated on the 
graph. 

0 34.6 38.6 44.0 47.28 50.5 52.0 

V I  (deg.) 6.990 5.603 3.593 2.405 1.535 1.209 
x,,,, (pm) 81.8 220 560 1200 5500 22500 
y,,,, (pm) -10 -21.6 -35 -50 -150 -447 

TABLE 3. x,,,, and yrrlr of the self-similar trajectories with the ramp 

when x % xinr. By comparing the numerical and experimental results only the two 
experimental data points for 49" < 8 < 50" are affected by the parallax error. 
Consequently for these two experimental data points x = 4 cm was too small a 
distance at which to take the photograph. For this angle of 0 we needed to do  the 
experiment at about 8 to 10 cm. However, the parallax error is negligible for the rest 
of the experimental data. 

5.6. Dependence qfxi l , ,  upon 0 
We have previously stated that the Navier-Stokes calculations support the conclusion 
that the von Neumann point is the criterion for regular + irregular transition for 
self-similar strong shock diffraction, i.e. that v, + 0 as 8 + O N ,  see figure 18. We have 
also stated that measurements of z are not always good estimates of the self-similar 
trajectory angle because of the failure of the parallax assumption. Indeed, in general 

will depend upon the distance along the ramp where it is measured. However, it is 
evident that the z angles obtained from the Navier-Stokes calculations, see figure 16, 
appear to go to zero as 0 approaches the other criteria angles, 0, and 8,. We now 
consider this effect. 
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0'03 i 

35 40 45 50 55 
0 

FIGURE 19. X intercept versus ramp angle 0 for y = 5 /3 ,  M i  = 2.327. Also shown is fit to data 
of form 0.057243/(53.6 - Q ) 2 .  

In figure 19 we have plotted xint as defined in figure 9, as a function of 8. The 
measured xinr give every indication of becoming singular at a finite value of 8. Figure 
19 shows that a very good fit to the available data is 

0.057243 
(53.6 - 8)2' Xint  = 

The choice of 53.6" as the singular angle is not meant to exclude other angles, in 
particular 8,s or 8,. For the simple functional form of (32), 53.6" gives the best fit, but 
other functional forms cannot be excluded given the available data. 

Let us assume that xinr does in fact become singular for 8 in the neighbourhood 
of 53.6". Consider any fixed distance d (4 cm say) along the ramp, and suppose that 
the ramp angles 8 are such that xjn,(8) < d,  and also such that the trajectory becomes 
self-similar before reaching distance d on the ramp, as in figure 9. Then one has the 
relation 

x = arctan ( tany (1 - T)). (33) 

When x, ,~ 4 d ,  x = y .  But as x,,~ increases and becomes comparable to but still less 
than distance d, (33) shows that x < y .  Finally as x , ,~  approaches distance d ,  then the 
y coordinate of the trajectory at d will become smaller and approach zero. Therefore, 
x will be driven to zero even while y remains finite. This is possible because y 
is independent of d while in general x depends on d.  By our assumption that x,,~ 
diverges near 53.6", we are led to the conclusion that x is driven to zero at the same 
angle. 

The intercept x,,( is similar in scale to the distance the shock travels along the 
ramp before the Mach shock erupts. We have already described the eruption of the 
Mach shock as occurring when the corner signal cs overtakes the reflection node. 
If we further assume, as seems unavoidable, that the distance of overtaking also is 
singular near 53.6", this suggests that the speed of the corner signal becomes equal 
to the speed of the reflection node at that angle. 
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FIGURE 20. Conception of a self-similar, symmetric reflection without a boundary layer. 

5.7. The eflects of the boundary layer on the rate of growth of the Mach shock 
It is also possible to obtain self-similar strong shock diffraction by using internal 
cavities as in figure 2(b).  Experiments with these devices have been done by Smith 
(1959), Henderson & Lozzi (1975), and Virgona (1993). It is clear that for symmetric 
cavities the temperature and the velocity vector are the same for any two points 
( x , k y )  that are reflected in the plane of symmetry SS. So SS is a perfect adiabatic 
boundary with no viscous shear along it, thus no boundary layer. Therefore the 
boundary conditions (25) apply along SS. Additionally SS behaves as though it is 
an infinitely rigid wall. Thus even for a real gas, the plane of symmetry is a perfect 
adiabatic, slipping, infinitely rigid surface with boundary conditions (25), and which 
can be closely realized physically. 

The boundary conditions can now be applied to the ramp by imagining a mirror 
image of the diffracting system in which the ramp surface is now the plane of symmetry 
SS, as in figure 20. This procedure simulates the self-similar cavity diffraction. If the 
previous ramp Navier-Stokes calculations are now repeated using the new boundary 
conditions (25) instead of the physical ramp boundary conditions (27), then the net 
effect will be to remove the viscous, heat-conducting boundary layer even though we 
are retaining the finite viscosity and thermal conductivity of the argon. The results for 
triple-shock-point trajectories 8 less than or approximately equal to 8, are presented 
in figure 21. When Q 4 He, the trajectories are straight lines which pass through the 
apex with great precision: for example for x = 0 the discrepancy in y is about 3.3 pm 
when €' = 50.5". It follows at once that such systems are immediately irregular when 
Q < 8, and self-similar CMRs. There is then no parallax error c and = y. Since the 
boundary layer has been removed these conditions imply that (24) applies locally on 
the ramp instead of (23). 

As the ramp angle 8 approaches 8,, the trajectories become distorted from straight 
lines. This will be discussed in the next subsection. 

When we plotted these y versus 8 Navier-Stokes calculations we obtained the 
extraordinary result that they were in close agreement with the results from the ideal 
gas Euler calculations, see figure 22. There is actually a small systematic displacement 
of approximately 0.1" from the Euler results such as to reduce the rate of growth of 
the Mach shock slightly. 
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FIGURE 21. Numerical trajectories of the shock triple point in a viscous, heat-conducting gas with 
adiabatic/slip boundary conditions on the ramp surface. 0 is in the neighbourhood of 0, = 53.776". 
Note in particular 0 = 54". 
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6 0 NS adiabatic, slip 
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FIGURE 22. Self-similar trajectory angle w for Euler equation and Navier-Stokes equations with 
two different boundary conditions on the ramp. Lines indicate best quadratic fit to the Euler data 
and to the Navier-Stokes with isothermal and non-slip boundary conditions. The three transition 
criteria are indicated on the graph. Dashed line shows abrupt transition of Navier-Stokes with 
isothermal and non-slip boundary conditions near 54". 

On comparing the results of the Navier-Stokes simulations for boundary conditions 
(25) and (27) it is concluded that the viscous, heat-conducting boundary layer is the 
dominant influence in reducing the self-similar rate of growth of the Mach shock. This 
fact has long been suspected by some researchers. The small discrepancy between the 
Euler and the Navier-Stokes adiabatic/slip results is attributed to momentum and 
heat transfer in the diffusing contact discontinuity, although this is an open question. 
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FIGURE 23. Triple-point trajectory for Navier-Stokes equation with adiabatic and slip boundary 
conditions on ramp surface; 0 = 540. Navier-Stokes calculation was initialized with data from an 
inviscid calculation which had Mach stem 5 pm high. 

5.8. The range 8, < 8 < 8N 
In this range (24) can be satisfied for an ideal gas, while a real gas satisfies (23). 
In either case, a regular reflection is now possible. The Euler calculations in this 
range still support the von Neumann point, see figures 16, 18, and 22. Although the 
Navier-Stokes calculations with the isothermal/non-slip boundary conditions (27) 
also support this point once self-similarity is established, the prohibitive cost of the 
calculations made it impracticable to extend the y versus 8 curve into the range. 

However for the adiabatic/slip boundary conditions (25) it is possible to eco- 
nomically perform the computations in this angular range, and for this range the 
calculations produced a regular reflection. The y versus 6 curve was explored nu- 
merically near the 9, point. In particular y was calculated for 9 = 9, f 0.1", and it 
was concluded that the Navier-Stokes calculation indicated a discontinuity in the y 
at 9,. Figure 22 shows the discontinuity in trajectories for 8 near 9, = 53.776. As 
0 approaches 6, from below, the triple-point trajectories increasingly deviate from 
straight lines. Because of the adiabatic, slip boundary conditions, there is no physical 
boundary layer in these calculations. Examinations of the velocity and temperature 
fields from the Navier-Stokes calculations do not show any evidence of a numerical 
boundary layer. 

As discussed above, Euler calculations in this range of 9 do form a Mach shock, 
while the Navier-Stokes calculations do not. It is interesting to ask whether the 
Navier-Stokes calculation can support a Mach shock if it already exists. This is 
accomplished numerically by running an Euler calculation for a few steps until it has 
formed a Mach stem 5 pm high. The data from the Euler calculation are then used 
to initialize the Navier-Stokes calculation, see figure 23. Clearly the Navier-Stokes 
calculation can support a Mach shock once it has formed. 

The numerical results and experiments suggest the intriguing possibility that in the 
range 8, < 8 < O N  with slip, adiabatic boundary conditions, there are two stable 
configurations, corresponding to regular reflection and Mach reflection. The regular 
reflection configuration is only slightly stable and is not observed experimentally 
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because slight perturbations either from imperfections in the experimental apparatus 
or statistical fluctuations in the gas move the state out of the region of stability. 
The Navier-Stokes calculations have neither imperfections in the surface of the ramp 
nor fluctuations in the gases, and thus can produce a regular reflection. However, if 
the Navier-Stokes calculation is initialized with a configuration closer to the Mach 
reflection than the regular reflection, it quickly relaxes into the Mach reflection form. 

This hypothesis would further suggest that the regular reflection configuration 
is less stable for the Euler equation than for the Navier-Stokes equations because 
the Euler calculations always produce Mach shocks in this angular range. In this 
case, the perturbations which destroy the RR configuration would arise from the 
numerics. In contrast, the Navier-Stokes calculation is stabilized by the presence of 
momentum and heat diffusion. Numerical perturbations, if they are sufficiently small, 
can be diffused away in the Navier-Stokes simulation before they can cause a major 
deviation in the solution. 

If experimental or statistical fluctuations are responsible for the observation of the 
Mach stem in cavity experiments in the range 8, < 8 < ON, this opens the possibility 
that such fluctuations may also affect the eruption of the Mach stem in experiments 
when 8 < 8,, even for ramp experiments. This is an open question deserving serious 
study. 

5.9. Heat transfer versus viscosity eflects 
In order to obtain an estimate of the relative magnitude of these effects on the 
eruption of the Mach shock, the 8 = 52" calculations were repeated with different 
boundary conditions. In the first of them, the ramp was made adiabatic and non-slip, 

and then conversely, 

(35) 
au 
dY 
- = 0, T = 293.15 K, 

that is a slip boundary with an isothermal surface. The results are presented in 
figure 24 as curves C and D respectively. The eruption begins at about 0.65 cm for 
curve D and at about 0.21 cm for curve C. So in this case the heat transfer delays the 
eruption about three times as much as the viscosity does. 

5.10. On the criterion for  RR + C M R  transition in a real gas 
An extraordinary result is that a tangent to the real gas curve w versus 8 for angles 
8 < 45" will, if extended to w = 0 pass through or very close to the ideal gas 8, point, 
see figure 18. This is further support for the conclusion that a CMR comprises an 
SMR followed by a wave composite r' - cs which acts like a detaching shock. For 
the self-similar conditions of y versus 8, the parallax error is of course zero. The 
parallax error for x is negligible when 8 < 45", because then x + xint, when x w 4 cm. 
Thus the blockage to the flow due to the ramp is the dominant effect when 8 < 45", 
the real gas only causes the Mach shock to grow somewhat more slowly than in an 
ideal gas. 

In order to explore the matter further, some data for the angle q that the contact 
discontinuity cd makes with the ramp are presented in table 4. From figure 25, 

q = w + 6 n  (36) 
and 6, is the particle path deflection through the Mach shock at the triple point. In 
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A - isothermal, non-slip 

C - adiabatic, non-slip 
M B - adiabatic, slip 

w D - isothermal, slip 
0.00010 

Y ( 4  

0.00005 

0 0.0 1 0.02 0.03 

x (m> 
FIGURE 24. Effects of various boundary conditions on the trajectory of the shock triple point when 

0 = 52". (x,y) are the shock triple point coordinates. 

0 34.6 38.6 44 47.28 50.5 52 53.776 57.021 

6, 16.4 13.7 9.83 7.59 5.11 3.89 2.61 0 
'1 23.4 19.3 13.4 10.0 6.65 5.10 3.28 0 

TABLE 4. Impact angle of the contact discontinuity on the ramp surface 

order to calculate a particular 6,, the angle coo from figure 3(a) was extracted from 
the Navier-Stokes data, and used as input to the inviscid von Neumann theory to 
find 6,. At 8 = 34.6" the contact discontinuity cd and its nearby particle paths impact 
on the ramp at the comparatively steep angle of y = 23.4", but this becomes steadily 
smaller as 8 + 8,. If the curve were extended to O N ,  then y = 0 = y = 6,, and the cd 
would not only then be parallel to the ramp, but would coincide with its surface. This 
means that the local flow about the shock triple point is increasingly influenced by 
the surface boundary conditions as 8 gets smaller, and consequently less influenced 
by the ramp blockage. 

Now the detachment condition is only available for 8 < 8,, so if a CMR is to 
exist in the range 8, < 8 < O N ,  then some other dynamical process must induce the 
transition RR $ CMR. It is noted that since the theory allows either of these systems 
to occur, then the one that actually occurs will have its stability under constant 
test by the fluctuations which are invariably present for a real gas flow. Now the 
two-state flow along the cd in a Mach reflection has both a temperature and a velocity 
discontinuity across the cd, so the two-state flow is not even in thermal or dynamic 
equilibrium, let alone stable. However the shock system is stable even though the 
two-state flow downstream is not. Otherwise a Mach reflection could not exist and 
this would contradict experiment. It seems plausible therefore that if an RR appears 
in the range, then the fluctuations could cause transition to the CMR by 'discovering' 
the thermodynamically and dynamically unstable two-state flow, but this is also an 
open question. 
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FIGURE 25. Relation between impact angle q ,  self-similar trajectory angle y and Mach-shock 
particle path deflection angle 6,. 

6.  Conclusions 
(1)  When a strong shock propagating in a viscous, heat-conducting gas diffracts 

over a smooth rigid isothermal ramp with 8 < 8,, the effects of the properties of a 
real gas is to curve the shock triple-point trajectory and to delay the onset of the 
irregular (Mach) reflection. For 8 < 8,, the diffraction comprises a pre-cursor regular 
reflection which moves at a uniform speed along the ramp, is followed by a corner 
signal which is a sonic compression and eventually overtakes the pre-cursor also at 
a uniform speed and forces the eruption of a Mach shock. Even though 8 < Be,  the 
eruption occurs at, or near, the instant that the detachment condition is attained at 
the pre-cursor reflection point R. The Mach shock moves faster than the corner signal, 
and the unsteady system evolves into a self-similar complex Mach reflection. The 
interaction of the corner signal with the reflected shock causes it to bend smoothly 
into a stronger shock and produce a local irregularity analogous to a von Neumann 
reflection with the difference that the corner signal arrives at the interaction zone, 
whereas in a von Neumann reflection it leaves the zone. 

(2) The properties of the corner signal with 8 < O,, and before overtaking are as 
follows: it is a smooth isentropic compression; relative to it, the flow is supersonic on 
its upstream side and sonic on its downstream side; it is generally oblique to the flow, 
and unsteady; it is driven from the rear as though it were a shock detaching from a 
blunt body; the gradients across it may be substantial enough to be easily detected 
by schlieren apparatus. 

(3) The assumption that the trajectory of the shock triple point is a straight 
line through the ramp apex (the parallax assumption) is wrong for a viscous, heat- 
conducting gas with isothermal and non-slip boundary conditions. 

(4) There is strong, but not yet conclusive evidence that the criterion for the 
regular e irregular transition of a self-similar, strong shock diffraction over a rigid 
ramp with isothermal and non-slip boundary conditions is the von Neumann criterion. 



Shock waves diflracting over rigid ramps 35 

( 5 )  The viscous, heat-conducting boundary layer is the dominant influence which 
reduces the self-similar rate of growth of the Mach shock as compared to an ideal 
gas. 

We are indebted to Professor P. Colella for many conversations and for the use 
of his data in figures 16 and 18. Support for this work was provided by the 
Applied Mathematical Sciences Program and the HPCC Grand Challenge Program 
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contract DE-AC03-76SF00098 and by the Defense Nuclear Agency under IACRO 
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